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Hidden Revolute Joints
In this paper, we examine two spherical parallel manipulators (SPMs) constructed with
legs that include planar and spherical subchains that combine to impose constraints
equivalent to hidden revolute joints. The first has supporting serial chain legs constructed
from three revolute joints with parallel axes, denoted RkRkR, followed by two revolute

joints that have intersecting axes, denoted cRR. The leg has five degrees-of-freedom and is

denoted RkRkR-cRR. Three of these legs can be assembled so the spherical chains all
share the same point of intersection to obtain a spherical parallel manipulator denoted

as 3-RkRkR-cRR. The second spherical parallel manipulator has legs constructed from

three revolute joints that share one point of intersection, denoted dRRR, and a second pair
of revolute joints with axes that intersect in a different point. This five-degree-of-freedom

leg is denoted dRRR-cRR. The spherical parallel manipulator constructed from these legs

is 3-dRRR-cRR. We show that the internal constraints of these two types of legs combine to
create hidden revolute joints that can be used to analyze the kinematics and singularities
of these spherical parallel manipulators. A quaternion formulation provides equations
for the quartic singularity varieties some of which decompose into pairs of quadric surfa-
ces which we use to classify these spherical parallel manipulators.
[DOI: 10.1115/1.4035542]
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1 Introduction

Spherical parallel manipulators (SPMs) provide control of three
degrees-of-freedom in orientation which is useful in a wide range
of applications such as orienting devices [1], robotic wrists [2–5],
robotic surgery [6], and human joint rehabilitation [7]. Recent
research in the type synthesis of spherical parallel manipulators
has yielded a large number of specialized devices that rely on geo-
metric constraints in the supporting legs. In this paper, we study
two structures that have internal constraints that combine to form
hidden revolute joints. Once these joints are identified, the analy-
sis of these spherical parallel manipulators is simplified.

The two structures that we examine in this paper arise in the
work of Yang [8], who uses “position and orientation characteris-
tic (POC)” of the motion output link (e.g., moving platform of a
parallel mechanism, end link of a serial mechanism, etc.) to iden-
tify new structures for spherical parallel manipulators, two of
which shown in Figs. 1 and 2. About the same time, Kong and
Gosselin [9] uses screw theory for type synthesis and obtained the
equivalent spherical parallel mechanisms, Fig. 3.

In the first case, each leg has a series of three revolute joints
that form a planar chain, denoted RkRkR, and two more revolute
joints that have axes that intersect, denoted cRR, Fig. 1. When
three of these legs are assembled so the ending cRR chains share
the same point of intersection, O0, the result is a three-degree-of-
freedom 3-RkRkR-cRR spherical parallel manipulator.

In the second case, each leg is constructed from a series of three
revolute joints that form a spherical chain with center O0i,
i¼ 1,2,3, denoted dRRR, and two more revolute joints that have
axes that intersect, cRR, Fig. 2. When three of these legs are
assembled so the ending cRR chains share the same point of

intersection, O0, the result is a three-degree-of-freedom 3- dRRR-cRR spherical parallel manipulator [8].
Kong and Gosselin [9] have the same structures as those pre-

sented by Yang [8], but use the notation ðRRRÞE and ðRRRÞS to
denote a planar and spherical RRR chains, respectively, and �R�R to
denote the intersection of the two ending revolute joints. They
denote these spherical parallel manipulators as 3-(RRR)E-�R�R and
3-ðRRRÞS-�R�R, respectively, Fig. 3.

Our goal is to analyze the forward kinematics and singularity
varieties of the 3-RkRkR-cRR and 3- dRRR-cRR spherical parallel

Fig. 1 The spherical parallel manipulator, 3-RkRkR-dRR, con-
sisting of three revolute joints that form a planar chain followed
by two revolute joints with axes that intersect. The three legs
are assembled so the axes of the end pairs of revolute joints
intersect at O0.
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manipulators, which include internal constraints on each leg
formed from planar and spherical subchains. We show that these
planar and spherical subchains create hidden revolute joints that,
once identified, simplify the analysis. The result is the constraint
manifolds for these spherical parallel manipulators as the intersec-
tion of quadrics in quaternion coordinates. The Dixon resultant is
used to solve the forward kinematic equations. And we obtain the
singularity varieties of the general versions of these spherical par-
allel manipulators and their special cases.

2 Literature Review

The study of spherical parallel manipulators has shown that the
forward kinematic equations of a general SPM have eight solu-
tions [10,11]. Huang and Yao [12] used actuation joint angles as
unknowns in solving the forward kinematics and a closed-form
solution for a specific structure was obtained. Bai et al. [13] pro-
posed a robust forward kinematic analysis by representing the
SPMs using two spherical four-bar linkages. Kong and Gosselin

[14] proposed a simple kinematics equation to calculate the
unique solution of the Agile eye. Zhang et al. [15] analyzed the
kinematics performance of a new orthogonal spherical parallel
mechanism. Gan et al. [16] studied the forward kinematics solu-
tion distribution and analytic singularity-free workspace of linear-
actuated symmetrical spherical parallel manipulators.

Gosselin and Angeles [17] were the first to study the singular-
ities of general parallel manipulators and introduced two Jacobian
matrices that define input and output velocities. Bonev and Gosse-
lin [18] presented the computation and representation of the type
2 singularity loci of symmetric spherical parallel mechanisms
based on an intuitive orientation representation. Sefrioui and Gos-
selin [19] studied the singularity loci of general three-degree-of-
freedom planar parallel manipulators and obtained a graphical
representation of these loci in the manipulator’s workspace. Collin
and McCarthy [20] studied the workspace and singular configura-
tions of a planar platform supported by three linearly actuated
legs, the 3-RPR parallel manipulator. Collin and McCarthy [21]
then studied the Jacobian of spatial parallel manipulators that
have triangular base and top platform architectures with 2-2-2 and
3-2-1 actuator configurations. Yu et al. [22] made a comparative
study on motion characteristics of three two-degree-of-freedom
pointing mechanisms.

This paper analyzes the 3-RkRkR-cRR and 3- dRRR-cRR spherical
parallel manipulators that have legs with planar and spherical sub-
chains that combine to impose hidden revolute joints. Using
these hidden joints, we obtain the forward kinematics and Jaco-
bian of these manipulators. A precursor to this work is Kong and
Gosselin [23], who generate alternative spherical parallel mecha-
nisms by removing joints. What we show here is that to analyze
these systems, we must identify and recreate these hidden revo-
lute joints.

3 The Hidden Revolute Joint

In this section, we show how internal geometric constraints on
each leg of a 3-RkRkR-cRR spherical parallel manipulator intro-
duce the equivalent of a hidden revolute joint. Intersection of the
motion subgroups [24] for the planar and spherical subchains of
these legs suggests the existence of a shared axis, and in what fol-
lows we provide a detailed calculation to identify this hidden rev-
olute joint and its properties. A similar analysis can be applied to

Fig. 2 The spherical parallel manipulator, 3- dRRR-dRR, formed
from three revolute joints with axes that intersect in one point
and two more revolute joints with axes that intersect. The three
legs are assembled so the axes of the end pairs of revolute
joints intersect at O0.

Fig. 3 Spherical parallel manipulators by Kong and Gosselin [9] that have the same structure

as the 3-RkRkR-dRR and 3- dRRR-dRR, denoted (a) 3-ðRRRÞE -�R�R and (b) 3-ðRRRÞS -�R�R
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the legs of the 3- dRRR-cRR spherical parallel manipulator in order
to identify its hidden revolute joint.

Consider the 5R serial chain shown in Fig. 4, which forms one
leg of this spherical parallel manipulator. This leg has the internal
geometric constraints: (i) the subchain chain R1R2R3 forms a pla-
nar chain such that each link moves in planes perpendicular to the
Z axis of the ground frame F; and (ii) the remaining joints of the
subchain chain R4R5 are required to intersect at the origin of F
such that the links of this chain are constrained to move on con-
centric spheres around this point.

Of particular interest is the movement of the link denoted R3R4,
which must satisfy both constraints, that moves on a plane perpen-
dicular to the Z axis and on a sphere around the origin of the
ground frame F. We use dual quaternions to define the movement
of this link [25,26].

A dual quaternion, bA is formed from a pair of quaternions, A
and U, written as, bA ¼ Aþ eU. A quaternion has four real compo-
nents, A ¼ ða1; a2; a3; a4Þ, and the product of two quaternions AB
has the four components given by the matrix operation

AB ¼

a4 �a3 a2 a1

a3 a4 �a1 a2

�a2 a1 a3 a4

�a1 �a2 �a3 a4

2
664

3
775

b1

b2

b3

b4

8>><
>>:

9>>=
>>; (1)

This definition of the quaternion product simplifies its calculation
and avoids Hamilton’s quaternion units, i, j, and k [26].

The product of two dual quaternions bA ¼ Aþ eU and bB ¼
Bþ eV is given by

bA bB ¼ ðAþ eUÞðBþ eVÞ ¼ ABþ eðAV þ UBÞ (2)

This operation can be viewed as multiplication with the condition
e2 ¼ 0, see Ref. [25].

The movement of the link R3R4, as constrained by the planar
chain R1R2R3, is defined by the dual quaternion bP that is the prod-
uct of translations by a and b in the X and Y directions, respec-
tively, and a rotation h about the Z direction

bX transðaÞ ¼ ð0; 0; 0; 1Þ þ eða=2; 0; 0; 0ÞbY transðbÞ ¼ ð0; 0; 0; 1Þ þ eð0; b=2; 0; 0ÞbZ rotðhÞ ¼ ð0; 0; sin h=2; cos h=2Þ
(3)

which yields

bP ¼ bX trans að ÞbY trans bð ÞbZ rot hð Þ
¼ 0; 0; sin h=2; cos h=2ð Þ

þe
a

2
cos h=2þ b

2
sin h=2;� a

2
sin h=2þ b

2
cos h=2; 0; 0

� �
(4)

Now the movement of link R3R4 as constrained by the spherical
chain R4R5 is defined by the dual quaternion bS that is the product
of a rotation k about the Y axis, a rotation of �l around the X axis
and a rotation / about the Z axis

bY rotðkÞ ¼ ð0; sin k=2; 0; cos k=2ÞbXrotð�lÞ ¼ ð�sin l=2; 0; 0; cos l=2ÞbZ rotð/Þ ¼ ð0; 0; sin /=2; cos /=2Þ
(5)

which yields

bS ¼ bY rot kð ÞbX rot �lð ÞbZ rot /ð Þ

¼ �cos
k
2

cos
/
2

sin
l
2
þ cos

l
2

sin
k
2

sin
/
2

�

� cos
l
2

cos
/
2

sin
k
2
þ cos

k
2

sin
l
2

sin
/
2

� cos
/
2

sin
k
2

sin
l
2
þ cos

k
2

cos
l
2

sin
/
2

� cos
k
2

cos
l
2

cos
/
2
� sin

k
2

sin
l
2

sin
/
2

�
(6)

The angles k and l can be interpreted as longitude and latitude
angles of the position of the local z axis of rotation for this spheri-
cal movement.

In order for the link R3R4 to be able to move in a way that satis-
fies both the planar chain R1R2R3 and the spherical chain R4R5,
we must have

bP ¼ bS (7)

This shows that a ¼ b ¼ 0; k ¼ l ¼ 0, and h ¼ /. Thus, to sat-
isfy the geometric constraints imposed on this leg, the movement
of the link R3R4 is given

bP ¼ bS ¼ ð0; 0; sin h=2; cos h=2Þ (8)

which is a pure rotation about the ground Z axis. This rotation is
equivalent to the presence of a revolute joint that attaches link
R3R4 to the fixed frame. We call this a hidden revolute joint that
arises from the geometric constraints of the RkRkR-cRR leg as
part of the 3-RkRkR-cRR spherical parallel manipulator.

This hidden revolute joint can be identified for each of the
RkRkR-cRR legs no matter how they are positioned. The axis of
this joint passes through the center defined by the movement of
the spherical chain and is in the direction perpendicular to the
plane of movement of the planar chain. The existence of the hid-
den revolute joint shows that the movement of the leg is equiva-
lent to an end-effector supported by spherical 3R chain RiHRi4Ri5,
that has its base link Ri4RiHRi3 which is the output link of the pla-
nar four-bar linkage Ri1Ri2Ri3RiH , i¼ 1, 2, 3, Fig. 5.

A similar analysis for the 3- dRRR-cRR spherical parallel manipu-
lator shows that the link Ri3Ri4 must rotate around the axis that
passes through the center of the spherical chain Ri1Ri2Ri3 and the
spherical chain Ri4Ri5. This hidden revolute joint combines with
Ri4Ri5 to form a spherical 3R chain that supports the end-effector,
and the base link Ri4RiHRi3 is driven by the spherical four-bar
linkage Ri1Ri2Ri3RiH , i¼ 1, 2, 3, Fig. 6.

Fig. 4 The link R3R4 connects the planar and spherically con-

strained portions of the 3-RkRkR-dRR
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In both cases, the dimensions of the equivalent 3- dRRR spheri-
cal parallel manipulator that includes the hidden revolute joints
is used to analyze the movement of the 3-RkRkR-cRR and
3- dRRR-cRR spherical parallel manipulators.

4 Constraint Manifold of the 3- dRRR Manipulator

Since the hidden revolute joints can be identified for both the

3-RkRkR-cRR and the 3- dRRR-cRR spherical parallel manipulators
no matter how they are positioned, we just study the constraint

manifold of the equivalent 3- dRRR spherical parallel manipulator
that includes the hidden revolute joints.

The diagram of the equivalent 3- dRRR manipulator is shown in
Fig. 7, where ui, wi, vi, i¼ 1,2,3, denote the unit vectors along the
axes of joints RiH, Ri4, and Ri5, respectively, and li is the angle
between axes ui and wi, while si is the angle between axes wi and
vi. We assign a O-XYZ coordinates connected with the fixed plat-
form, and a O-x0y0z0 coordinates connected with the moving plat-
form at the centered point O. Let the positions of the fixed pivots
be specified by ui ¼ ðxi; yi; ziÞ, i¼ 1, 2, 3, measured in the fixed
frame F and the moving pivots be vi0 ¼ ðri; si; tiÞ, i¼ 1, 2, 3,
measured in the moving frame M.

The position and orientation of the end-effector of the manipu-
lator is defined by the coordinate transformation of points z0 in a
moving frame M to coordinates z in a fixed frame F given by

z ¼ ½R�z0 þ d (9)

The matrix ½R� is a 3� 3 rotation matrix and the vector d ¼
ðdx; dy; dzÞ is the 3� 1 translation vector that defines the position
of reference frame M relative to F.

The rotation matrix ½R� and translation vector d in Eq. (9) can
be defined in terms of dual quaternion coordinates [26] given by

½R� ¼

q2
1�q2

2�q2
3þq2

4 2ðq1q2�q3q4Þ 2ðq1q3þq2q4Þ

2ðq1q2þq3q4Þ �q2
1þq2

2�q2
3þq2

4 2ðq2q3�q1q4Þ

2ðq1q3�q2q4Þ 2ðq2q3þq1q4Þ �q2
1�q2

2þq2
3þq2

4

2
66664

3
77775

(10)

and

d ¼ 2

�q8 q7 �q6 q5

�q7 �q8 q5 q6

q6 �q5 �q8 q7

2
4

3
5 q1

q2

q3

q4

8>><
>>:

9>>=
>>; (11)

Since the moving platform of the spherical 3- dRRR parallel
manipulator can only rotate around the point O of the fixed plat-
form, we choose the point O as the origin of the fixed and moving
frames, then, the translation vector d is zero. Then, the vector vi0

defined in the moving frame can be transformed to the corre-
sponding vector vi defined in the fixed frame by

Ci : vi ¼ ½R�vi0; i ¼ 1; 2; 3 (12)

Let the angle between axes ui and vi be qi, then, we have three
constraint equations for the spherical platform

Ci : uT
i vi ¼ uT

i ½R�vi0 ¼ cos qi; i ¼ 1; 2; 3 (13)

These equations can be interpreted as constraints on vectors with
quaternion components q ¼ ðq1; q2; q3; q4Þ. It is convenient to
write Eq. (13) as the quadratic forms

Ci : qT½Ci�q ¼ cos qi; i ¼ 1; 2; 3 (14)

where ½Ci� is a symmetric 4� 4 matrix with the upper triangular
coefficients given by

Fig. 6 The platform is supported by three spherical 3R chains
RiHRi4Ri5, and each base link Ri4RiHRi3 is driven by the spheri-
cal 4R linkage Ri1Ri2Ri3RiH . The revolute joints RiH, i 5 1,2,3,
denote the hidden revolute joints.

Fig. 5 The platform is supported by three spherical 3R chains
RiHRi4Ri5, and each base link Ri4RiHRi3 is driven by the planar
four-bar linkage Ri1Ri2Ri3RiH . The revolute joints RiH, i 5 1,2,3,
denote the hidden revolute joints.

Fig. 7 The 3- dRRR manipulator. ui, wi, vi, i 5 1,2,3, denote the
unit vectors along the axes of joints RiH, Ri4, and Ri5, respec-
tively, and li is the angle between axes ui and wi, while si is the
angle between axes wi and vi.
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C11i ¼ xiri � yisi � ziti

C12i ¼ riyi þ xisi

C13i ¼ rizi þ xiti

C14i ¼ sizi � yiti

C22i ¼ �xiri þ yisi � ziti

C23i ¼ rizi þ yiti

C24i ¼ �rizi þ xiti

C33i ¼ �xiri � yisi þ ziti

C34i ¼ riyi � xisi

C44i ¼ xiri þ yisi þ ziti; i ¼ 1; 2; 3

(15)

The intersection of the three quadric equations in quaternion coor-
dinates defines the constraint manifold of the spherical platform.

5 Forward Kinematics Analysis

For either of the planar 4R driving linkage of the 3-RkRkR-cRR
manipulator in Fig. 5 or the spherical 4R driving linkage of the

3- dRRR-cRR mechanism shown in Fig. 6, we can identify a driving
link Ri1Ri2 and an output link Ri3RiH . Given the input angle h of
the driving link, we can obtain the output angle w of the output
link [25]

w hð Þ ¼ arctan
B

A

� �
6arccos

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2
p
� �

(16)

where, for the planar 4R driving linkage

AðhÞ ¼ 2ab cos h� 2gb; BðhÞ ¼ 2ab sin h;

CðhÞ ¼ g2 þ b2 þ a2 � h2 � 2ag cos h
(17)

where a, h, b, and g denote the link lengths of the links
Ri1Ri2; Ri2Ri3; Ri3RiH , and Ri1RiH , respectively, which define the
dimensions of the 4R planar linkage. For the spherical 4R driving
linkage

AðhÞ ¼ cos h sin a cos c sin b� cos a sin c sin b

BðhÞ ¼ sin h sin a sin b

CðhÞ ¼ cos g� cos h sin a sin c cos b� cos a cos c cos b

(18)

where a, b, c, and g denote the angular lengths of the links
Ri1Ri2; Ri2Ri3; Ri3RiH , and Ri1RiH , respectively, which define the
dimensions of the 4R spherical linkage.

For the convenience of analysis, let the axes of the three hidden
revolute joints R1H; R2H , and R3H in Fig. 7 be perpendicular to
each another, and let the axes of three revolute joints R15, R25, and
R35 which connect with the moving platform be perpendicular to
each another. We assign the X, Y, Z axes of fixed frame O-XYZ in
coincidence with the u1; u2; u3 axes, and the x0, y0, z0 axes of
moving frame O-x0y0z0 in coincidence with the v2; v3; v1 axes,
respectively. As the link 1 of each leg rotates an angle wi, the vec-
tor of the corresponding branched intermediate axis wi relative to
the fixed frame F is given by [25]

w1 ¼ ðcos l1; cos w1 sin l1; sin w1 sin l1Þ;

w2 ¼ ðsin w2 sin l2; cos l2; cos w2 sin l2Þ;

w3 ¼ ðcos w3 sin l3; sin w3 sin l3; cos l3Þ

(19)

Let the moving unit vectors vi be specified by

v10 ¼ ð0; 0; 1Þ; v20 ¼ ð1; 0; 0Þ; v30 ¼ ð0; 1; 0Þ (20)

measured in the moving frame M. Then, the three constraint equa-
tions for the spherical platform can be written as

Ci : wT
i vi ¼ wT

i ½R�vi0 ¼ cos si; i ¼ 1; 2; 3 (21)

It is convenient to write Eq. (21) as the quadratic forms

Ci : qT½Di�q ¼ 0; i ¼ 1; 2; 3 (22)

The symmetric 4� 4 matrices, ½Di�; i ¼ 1; 2; 3, are given by

½D1� ¼

�cs1 � sl1sw1 0 cl1 �cw1sl1

0 �cs1 � sl1sw1 cw1sl1 cl1

cl1 cw1sl1 �cs1 þ sl1sw1 0

�cw1sl1 cl1 0 �cs1 þ sl1sw1

2
66664

3
77775 (23)

½D2� ¼

�cs2 þ sl2sw2 cl2 cw2sl2 0

cl2 �cs2 � sl2sw2 0 �cw2sl2

cw2sl2 0 �cs2 � sl2sw2 cl2

0 �cw2sl2 cl2 �cs2 þ sl2sw2

2
664

3
775 (24)

and

½D3� ¼

�cs3 � sl3sw3 cw3sl3 0 cl3

cw3sl3 �cs3 þ sl3sw3 cl3 0

0 cl3 �cs3 � sl3sw3 �cw3sl3

cl3 0 �cw3sl3 �cs3 þ sl3sw3

2
664

3
775 (25)
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where s and c denote the sine and cosine functions.
We dehomogenize the quaternion coordinates in Eq. (22) with

respect to q4. This is done by making the substitution

p1 ¼ q1=q4; p2 ¼ q2=q4; p3 ¼ q3=q4 (26)

Then, Eq. (22) can be seen as the functions of p1, p2 by putting the
products of power in p3 into the coefficients

Ci : fið1; p1; p2; p1p2; p
2
1; p

2
2Þ ¼ 0; i ¼ 1; 2; 3 (27)

According to Dixon’s resultant principle, we introduce two new
variables t1 and t2 and form the Dixon determinant

Dðp1; p2; t1; t2Þ ¼
f1ðp1; p2Þ f2ðp1; p2Þ f3ðp1; p2Þ
f1ðt1; p2Þ f2ðt1; p2Þ f3ðt1; p2Þ
f1ðt1; t2Þ f2ðt1; t2Þ f3ðt1; t2Þ

������
������ (28)

Dixon observed that D vanishes when t1¼ p1 and t2¼ p2, which
implies that (p1�t1)(p2� t2) are factors of D. Divide out these fac-
tors to obtain the Dixon polynomial d

d p1; p2; t1; t2ð Þ ¼
D p1; p2; t1; t2ð Þ
p1 � t1ð Þ p2 � t2ð Þ

¼ 0 (29)

The polynomial Eq. (29) can be rewritten as

d p1; p2; t1; t2ð Þ ¼
D p1; p2; t1; t2ð Þ
p1 � t1ð Þ p2 � t2ð Þ

¼ TT D½ �C ¼ 0 (30)

where TT ¼ ðt2
1; t1t2; t1; t2; 1Þ; CT ¼ ðp2

2; p1p2; p1; p2; 1Þ; ½D� is a
matrix whose elements are polynomials in p3.

Dixon proved that three functions in Eq. (27) have common
zeros if the determinant of the matrix ½D� equals to 0.

det½D� ¼ 0 (31)

Then, a univariate equation in p3 of degree 8 is obtained

Xþ8

j¼0

cjp
j
3 ¼ 0 (32)

where the coefficients cj are functions of the geometric parameters
of the manipulator and of the actuator angles. Then, eight sets of
solutions for the forward kinematic equations can be obtained.

To illustrate the above result, an example of the manipulator is
presented. The geometric parameters and the actuator angles of
the 3-RkRkR-cRR spherical parallel manipulator are given as
a¼ 1 mm, b¼ h¼ 2 mm, g¼ 3 mm, l1 ¼ l2 ¼ l3 ¼ 90 deg; s1 ¼
s2 ¼ s3 ¼ 45 deg; h1 ¼ h2 ¼ h3 ¼ 60 deg, while eight sets of sol-
utions obtained are listed in Table 1.

6 Singularities

In order to determine the singularities of the spherical platform,
we collect the quadratic Eq. (14) that define the constraint mani-
fold together with the unit magnitude requirement for a vector q
with quaternion components, to obtain

qT½C1�q¼ cosq1; qT½C2�q¼ cosq2; qT½C3�q¼ cosq3; qTq¼ 1

(33)

The time derivative of these four equations can be assembled into
the matrix equation

qT½C1�
qT½C2�
qT½C3�

q1; q2; q3; q4

2
66664

3
77775

_q1

_q2

_q3

_q4

8>>>><
>>>>:

9>>>>=
>>>>;
�

�1=2sinq1 0 0 0

0 �1=2sinq2 0 0

0 0 �1=2sinq3 0

0 0 0 0

2
66664

3
77775

�

_q1

_q2

_q3

0

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0

0

0

0

8>>>><
>>>>:

9>>>>=
>>>>;

(34)

which has the form of the Jacobian for a parallel manipulator

½A� _q � ½B� _r ¼ 0 (35)

where _q ¼ ð _q1; _q2; _q3; _q4Þ and _r ¼ ð _q1; _q2; _q3; 0Þ. The configura-
tions of the manipulator for which the determinant of the coeffi-
cient matrix ½A� is zero are known as “type 2 singularities” of the
manipulator [17].

The elements of ½A� in Eq. (35) are linear in the quaternion
coordinates q ¼ ðq1; q2; q3; q4Þ therefore

S : det½A� ¼ 0 (36)

defines a quartic algebraic manifold that we call the singularity
variety of the manipulator.

6.1 Singularity Variety of the General 3- dRRR. Let the posi-
tions of pivots in the fixed and moving frames in Fig. 7 be speci-
fied as shown in Table 2. / is the angle between axes u1 and u2,
while d is the angle between axes v1 and v2. k is the angle
between u3 axis and YOZ plane, while r is the angle between v3

axis and y0Oz0 plane. � is the angle between axis u1 and projec-
tion of axis u3 in YOZ plane, while e is the angle between axis v1

and projection of axis v3 in y0Oz0 plane.
Substitute these positions into the matrix ½A� of the Jacobian, to

obtain

Table 1 Solutions of 3-RkRkR-dRR spherical parallel manipulator with a 5 1 mm, b 5 h 5 2 mm, g 5 3 mm, l15l25l3590 deg;
s15s25s3545 deg; h15h25h3560 deg

p1 p2 p3

1 �0.133655 �0.133655 �0.133655
2 �1.86405 �1.86405 �1.86405
3 0.123025� 0.181317 i �0.836312� 0.552749 i �0.711599� 0.0465637 i
4 0.123025þ 0.181317 i �0.836312þ 0.552749 i �0.711599þ 0.0465637 i
5 �0.836312þ 0.552749 i �0.711599þ 0.0465637 i 0.123025þ 0.181317 i
6 �0.836312� 0.552749 i �0.711599� 0.0465637 i 0.123025� 0.181317 i
7 �0.711599� 0.0465637 i 0.123025� 0.181317 i �0.836312� 0.552749 i
8 �0.711599þ 0.0465637 i 0.123025þ 0.181317 i �0.836312þ 0.552749 i
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½A� ¼

�q1 �q2 q3 q4

G1 G2 G3 G4

G5 G6 G7 G8

q1 q2 q3 q4

2
664

3
775 (37)

where

G1 ¼ q4 sinð/� dÞ � q1 cosð/� dÞ
G2 ¼ �q3 sinð/þ dÞ � q2 cosð/þ dÞ
G3 ¼ �q2 sinð/þ dÞ þ q3 cosð/þ dÞ
G4 ¼ q1 sinð/� dÞ þ q4 cosð/� dÞ
G5 ¼ q4 cos k cos r sinð� � eÞ þ q3ðcos e cos r sin kþ cos k cos � sin rÞ

� q1½cos k cos r cosð� � eÞ � sin k sin r� � q2ðcos r sin k sin eþ cos k sin � sin rÞ
G6 ¼ �q3 cos k cos r sinð� þ eÞ þ q4ðcos e cos r sin k� cos k cos � sin rÞ

� q2½cos k cos r cosð� þ eÞ þ sin k sin r� � q1ðcos r sin k sin eþ cos k sin � sin rÞ
G7 ¼ �q2 cos k cos r sinð� þ eÞ þ q1ðcos e cos r sin kþ cos k cos � sin rÞ

þ q3½cos k cos r cosð� þ eÞ � sin k sin r� þ q4ðcos r sin k sin e� cos k sin � sin rÞ
G8 ¼ q1 cos k cos r sinð� � eÞ þ q2ðcos e cos r sin k� cos k cos � sin rÞ

þ q4½cos k cos r cosð� � eÞ þ sin k sin r� þ q3ðcos r sin k sin e� cos k sin � sin rÞ

(38)

Setting the determinant of ½A� to zero, we obtain the algebraic
equation of the singularity variety of the general 3- dRRR manipu-
lator as

S : c1q1q2q3q4 þ c2q3
1q3 þ c3q3

2q4 þ c4q3
3q1 þ c5q3

4q2 þ c6q2
1q2

3

þ c7q2
2q2

4 þ c8q2
1q3q4 þ c9q2

1q2q3 þ c10q2
1q2q4 þ c11q2

2q3q4

þ c12q2
2q1q3 þ c13q2

2q1q4 þ c14q2
3q2q4 þ c15q2

3q1q2 þ c16q2
3q1q4

þ c17q2
4q1q2 þ c18q2

4q2q3 þ c19q2
4q1q3 ¼ 0 ð39Þ

The coefficients c1 to c19 are constants defined by the positions of
ui and vi, i¼ 1, 2, 3. The singularity variety is a quartic surface in
the homogeneous coordinates q1; q2; q3, and q4. Its geometric
properties are a function of the parameters defining the kinematic
architecture of the spherical parallel manipulator.

6.2 Singularity Varieties of Special Cases. The geometric
properties of the singularity variety are characterized by the posi-
tions of the fixed and moving pivots. Besides, the above general
architecture, we have studied the singularity variety of the follow-
ing special architectures.

Type 1 Pivots lie on a great circle. There are three cases: (a)
the fixed pivots u1;u2, and u3 lie on a great circle; (b) the moving
pivots vi, v2, and v3 lie on a great circle; and (c) both the fixed
pivots and the moving pivots lie on great circles, Fig. 8.

Type 2 Pivots are coincident. There are three cases: (a) Two of
moving pivots vi are coincident in the moving body, (b) two of
the fixed pivots ui are coincident, or (c) both fixed pivots and
moving pivots are coincident, Fig. 9.

Type 3 Pivots are both coincident and on great circles. There
are two cases: (a) the pivots vi are on a great circle and two fixed
pivots are coincident; and (b) the pivots ui are on a great circle
and two of the moving pivots are coincident, Fig. 10.

In what follows, we provide the singularity varieties of these
cases. The positions of the pivots ui and vi are defined as shown in
Table 3, where s and c denote the sine and cosine functions,
respectively.

The pivots ui lie on a great circle. In this case, the singularity
variety of the platform is given by

S : k1q3
1q3 � k1q3

4q2 þ k2q3
3q1 � k2q3

2q4 þ k3q2
1q2

3 � k3q2
2q2

4

þ k4q2
1q2q3 þ k5q2

2q1q4 þ k6q2
1q3q4 þ k7q2

2q3q4 þ k8q2
1q2q4

þ k9q2
2q1q3 þ k5q2

3q1q4 þ k7q2
3q1q2 þ k10q2

3q2q4 þ k4q2
4q2q3

þ k6q2
4q1q2 þ k11q2

4q1q3 ¼ 0 ð40Þ

where the coefficients ki, i ¼ 1;…11 are constants defined by the
positions of ui and vi, i¼ 1, 2, 3.

The pivots vi lie on a great circle. In this case, the singularity
variety of the platform is given by

S : k1q3
1q3 þ k1q3

2q4 þ k2q3
3q1 þ k2q3

4q2 þ k3q2
1q2

3 � k3q2
2q2

4

þ k4q2
1q2q4 þ k5q2

2q1q3 þ k6q2
1q2q3 þ k7q2

2q1q4 � k8q2
1q3q4

þ k9q2
2q3q4 þ k5q2

3q2q4 þ k7q2
3q1q4 � k9q2

3q1q2 þ k4q2
4q1q3

þ k6q2
4q2q3 þ k8q2

4q1q2 ¼ 0 ð41Þ

where the coefficients ki, k ¼ 1;…9 are constants defined by the
positions of ui and vi, i¼ 1, 2, 3.

The pivots ui and vi lie on great circles. In this case, the singu-
larity variety of the platform is given by

S:k1ðq2
1q2

3�q2
2q2

4Þþk2ðq2
1q2q3þq2

4q2q3Þþk3ðq2
2q1q4þq2

3q1q4Þ¼0

(42)

Table 2 The positions of pivots ui and vi, i 5 1, 2, 3, defined in
the fixed and moving frames

1 2 3

u1 u2 u3

X 0 0 sin k
Y 0 �sin / �sin � cos k
Z 1 cos / cos � cos k

v1 v2 v3

x0 0 0 sin r
y0 0 �sin d �sin � cos r
z0 1 cos d cos � cos r
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where the coefficients ki, i¼ 1, 2, 3 are constants defined by the
positions of ui and vi, i¼ 1, 2, 3.

Two of the pivots vi are coincident. In this case, the singularity
variety of the platform is given by

S : P1P2 ¼ 4 sindð�q1q3 cos/þ q2q4 cos/þ q1q2 sin/

þ q3q4 sin/Þðq2q3 sink� q1q4 sinkþ q1q3 cosk sin�

þ q2q4 cosk sin�Þ ¼ 0 (43)

Two of the pivots ui are coincident. In this case, the singularity
variety of the platform is given by

S : P1P2¼ 4sin/ðq1q3 cosdþq2q4 cosd�q1q2 sindþq3q4 sindÞ
�ðq1q3 cosrsine�q2q4 cosrsineþq2q3 sinr

þq1q4 sinrÞ¼ 0 ð44Þ

There are two sets of coincident pivots on both the moving and
fixed bodies. The singularity variety of the platform is given by

S : P1P2 ¼ 4 sin / sin dðq1q3 � q2q4Þðq1q3 cos dþ q2q4 cos d

� q1q2 sin dþ q3q4 sin dÞ ¼ 0 (45)

The pivots vi are on a great circle and two fixed pivots are coinci-
dent. In this case, the singularity variety of the platform is given
by

S : P1P2 ¼ 4 sin / sin eðq1q3 � q2q4Þðq1q3 cos dþ q2q4 cos d

� q1q2 sin dþ q3q4 sin dÞ ¼ 0 (46)

The pivots ui are on a great circle and two of the moving pivots
are coincident. In this case, the singularity variety of the platform
is given by

Fig. 8 Type 1: (a) the pivots ui lie on a great circle, (b) the pivots vi lie on a great circle, and (c)
both sets of pivots ui and vi lie on great circles

Fig. 9 Type 2: (a) two of the pivots vi on the moving body are coincident, (b) two of the pivots
ui on the fixed body are coincident, and (c) there are two sets of coincident pivots on both the
moving and fixed bodies

Fig. 10 Type 3: (a) the pivots vi are on a great circle and two
fixed pivots are coincident and (b) the pivots ui are on a great
circle and two of the moving pivots are coincident

Table 3 The positions of pivots ui and vi, i 5 1, 2, 3, defined in
the fixed and moving frames, respectively

Type 1(a) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ð0;�s�; c�Þ v30 ¼ ðsr;�s�cr; c�crÞ

Type 1(b) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ðsk;�s�ck; c�ckÞ v30 ¼ ð0;�s�; c�Þ

Type 1(c) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ð0;�s�; c�Þ v30 ¼ ð0;�s�; c�Þ

Type 2(a) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ðsk;�s�ck; c�ckÞ v30 ¼ ð0; 0; 1Þ

Type 2(b) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ð0; 0; 1Þ v30 ¼ ðsr;�s�cr; c�crÞ

Type 2(c) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ð0; 0; 1Þ v30 ¼ ð0;�sd; cdÞ

Type 3(a) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ð0; 0; 1Þ v30 ¼ ð0;�s�; c�Þ

Type 3(b) u1 ¼ ð0; 0; 1Þ v10 ¼ ð0; 0; 1Þ
u2 ¼ ð0;�s/; c/Þ v20 ¼ ð0;�sd; cdÞ
u3 ¼ ð0;�s�; c�Þ v30 ¼ ð0; 0; 1Þ
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S : P1P2 ¼ 4 sin � sin dðq1q3 þ q2q4Þð�q1q3 cos /þ q2q4 cos /

þ q1q2 sin /þ q3q4 sin /Þ ¼ 0 (47)

Notice that the quartic singularity varieties of some special
cases that have coincident pivots decompose into pairs of quadric
surfaces.

We dehomogenize the quaternion coordinates with respect to q4

to visualize the surfaces. This is done by making the substitution
x ¼ q1=q4; y ¼ q2=q4 and z ¼ q3=q4. For type 1(c), set / ¼
30 deg; � ¼ 60 deg; d ¼ 30 deg; e ¼ 60 deg to obtain the quartic
surface shown in Fig. 11. For type 2(c), set d ¼ 60 deg to obtain
the two quadric surfaces shown in Fig. 12. For type 3(b), set / ¼
60 deg to obtain the two quadric surfaces shown in Fig. 13.

7 Conclusions

In this paper, we examine two spherical parallel manipulators,
3-RkRkR-cRR and 3- dRRR-cRR, that have the property that their
legs combine subchains that have specific geometric constraints.
We show that these geometric constraints combine to impose hid-
den revolute joints in series with the RR chains that connect to the
platform. Using these hidden revolute joints, the movements of
the two spherical parallel manipulators are equivalent to the
3- dRRR spherical platform. A quaternion formulation provides
equations for the quartic singularity varieties some of which
decompose into pairs of quadric surfaces which we use to classify
these spherical parallel manipulators.

This method can be used to analyze six other spherical parallel
manipulators presented by Kong and Gosselin [9], specifically,

the cases (i) 3-RkRkP-cRR (denoted 3-(RRP)E-�R�R), (ii) 3-RkPkR-cRR (denoted 3-(RPR)E-�R�R), (iii) 3-PkRkR-cRR (denoted

3-(PRR)E-�R�R), (iv) 3-PkPkR-cRR (denoted 3-(RPP)E-�R�R), (v)

3-PkRkP-cRR (denoted 3-(PRP)E-�R�R), and (vi) 3-RkPkP-cRR

(denoted 3-(PPR)E-�R�R). We obtain solutions for the forward kine-
matic equations and present the singularity varieties of the general
configuration and eight special cases. The introduction of the hid-
den revolute joints simplifies the kinematics and singularity analy-
sis of these spherical parallel manipulators.
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